
Spinlocks

Spinlocks

Samy Al Bahra Devon H. O’Dell

Message Systems, Inc.

April 8, 2011

Spinlocks

Introduction

Mutexes

A mutex is an object which implements acquire and relinquish

operations such that the execution following an acquire operation
and up to the relinquish operation is executed in a mutually
exclusive manner relative to the object implementing a mutex.

Spinlocks

Introduction

Locks

Locks are an implementation of a mutex.

Sleep lock

Any mutex type which deactivates processes that attempt to
acquire a mutex that has already been acquired by another
process until a relinquish operation on the mutex activates one
or more of them.

Spinlock

Any mutex type which forces callers of an acquire operation to
spend an unbounded number of processor cycles re-evaluating
the availability of the mutex until it has been acquired. The
process that invokes acquire is never deactivated before the
completion of the acquire operation.

Spinlocks are preferred to sleep mutexes when the waiting
time for a resource is less than the time for the scheduling
overhead of process activation/deactivation or when
scheduling simply is not possible.

Spinlocks

Non-Arbitrating Spinlocks

Naive

void

lock(uint32_t *mutex)

{

while (ck_pr_fas_32(mutex, true) != false)

ck_pr_stall();

return;

}

void

unlock(uint32_t *mutex)

{

*mutex = false;

return;

}

Spinlocks

Non-Arbitrating Spinlocks

Naive

 3e+07

 4e+07

 5e+07

 6e+07

 7e+07

 8e+07

 9e+07

 1e+08

 1.1e+08

 1.2e+08

 1.3e+08

 2 3 4 5 6 7 8 9 10 11 12

T
ot

al
 A

cq
ui

si
tio

ns
 (

in
 1

0
se

co
nd

s)

Number of Cores

Naive

Spinlocks

Non-Arbitrating Spinlocks

Cache Coherency

Spinlocks

Non-Arbitrating Spinlocks

Cache Coherency

Spinlocks

Non-Arbitrating Spinlocks

Cache Coherency

Spinlocks

Non-Arbitrating Spinlocks

Cache Coherency

Spinlocks

Non-Arbitrating Spinlocks

Cache Coherency

Spinlocks

Non-Arbitrating Spinlocks

Cache Coherency

Spinlocks

Non-Arbitrating Spinlocks

Cache Coherency

Spinlocks

Non-Arbitrating Spinlocks

Cache Coherency

Spinlocks

Non-Arbitrating Spinlocks

Cache Coherency

Spinlocks

Non-Arbitrating Spinlocks

Cache Coherency

Spinlocks

Non-Arbitrating Spinlocks

Cache Coherency

Spinlocks

Non-Arbitrating Spinlocks

Cache Coherency

Spinlocks

Non-Arbitrating Spinlocks

Cache Coherency

Spinlocks

Non-Arbitrating Spinlocks

Cache Coherency

Spinlocks

Non-Arbitrating Spinlocks

Cache Coherency

Spinlocks

Non-Arbitrating Spinlocks

Cache Coherency

Spinlocks

Non-Arbitrating Spinlocks

TATAS

void

lock(uint32_t *mutex)

{

while (ck_pr_fas_32(mutex, true) != false) {

while (ck_pr_load_32(mutex) == true)

ck_pr_stall();

}

return;

}

void

unlock(uint32_t *mutex)

{

*mutex = false;

return;

}

Spinlocks

Non-Arbitrating Spinlocks

TATAS

 2e+07

 4e+07

 6e+07

 8e+07

 1e+08

 1.2e+08

 1.4e+08

 1.6e+08

 2 3 4 5 6 7 8 9 10 11 12

T
ot

al
 A

cq
ui

si
tio

ns
 (

in
 1

0
se

co
nd

s)

Number of Cores

Naive
TATAS

Spinlocks

Non-Arbitrating Spinlocks

Exponential Backoff

void

lock(uint32_t *mutex)

{

ck_backoff_t backoff = CK_BACKOFF_INITIALIZER;

while (ck_pr_fas_32(mutex, true) != false)

ck_backoff_eb(&backoff);

return;

}

void

unlock(uint32_t *mutex)

{

*mutex = false;

return;

}

Spinlocks

Non-Arbitrating Spinlocks

Exponential Backoff

 0

 2e+08

 4e+08

 6e+08

 8e+08

 1e+09

 1.2e+09

 1.4e+09

 2 3 4 5 6 7 8 9 10 11 12

T
ot

al
 A

cq
ui

si
tio

ns
 (

in
 1

0
se

co
nd

s)

Number of Cores

Naive
TATAS

EB

Spinlocks

Non-Arbitrating Spinlocks

Fairness

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 3.5e+07

 4e+07

 4.5e+07

T
ot

al
 A

cq
ui

si
tio

ns
 (

1o
 s

ec
on

ds
)

Processor

Spinlocks

Non-Arbitrating Spinlocks

Fairness

Non-arbitrating spinlocks do not provide fairness (or
starvation-freedom) guarantees.

Spinlocks

Non-Arbitrating Spinlocks

Ticket

0

10 2

21

32

3Now Serving: 0

Now Serving: 0

Now Serving: 1

Now Serving: 2

Now Serving: 3

LOCK

LOCK, LOCK

UNLOCK

UNLOCK

UNLOCK

UNLOCK, LOCK

4Now Serving: 4

UNLOCK

Spinlocks

Non-Arbitrating Spinlocks

Anderson

U L L L

U L L L

U L L L

L U L L

L U L L

P

P

P

P

P

L L U L

P

L L U L

PLOCK

LOCK

UNLOCK

LOCK

UNLOCK

LOCK

L L L U

P

U L L L

P

UNLOCK

UNLOCK

Spinlocks

Non-Arbitrating Spinlocks

MCS

L

L T0

R

L T0

R

T1

S

L T0

R

T1

S

FAS

L T0

N

T1

S

R = Running
S = Spinning
N = Notify

L T1

R

T0 LOCK

T1 LOCK

T0 UNLOCK

Spinlocks

Non-Arbitrating Spinlocks

MCS

L T1

R

T2

S

L T1

S

T2

S

L T1

N

T2

S

L T2

R

T2 LOCK

T1 UNLOCK

Spinlocks

Non-Arbitrating Spinlocks

CLH

Stub

Stub T0

Stub T0 T1

T1

LOCK

LOCK

UNLOCK

Stub T0 T1

T0 T1

UNLOCK

R

R

R

S

S

Spinlocks

Non-Arbitrating Spinlocks

Fast path latency

Fast path latency

See http://concurrencykit.org/doc/appendixZ.html

http://concurrencykit.org/doc/appendixZ.html

Spinlocks

Non-Arbitrating Spinlocks

Limitations

Mutexes in general are not composable.

Subtle ordering issues can lead to hard-to-detect deadlock
conditions.

Blocking synchronization is sensitive to preemption.

Spinlocks

Discussion

Questions?

	Introduction
	Mutexes
	Locks

	Non-Arbitrating Spinlocks
	Naive
	Cache Coherency
	TATAS
	Exponential Backoff
	Fairness
	Ticket
	Anderson
	MCS
	CLH
	Fast path latency
	Limitations

	Discussion

