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Introduction

Mutexes

A mutex is an object which implements acquire and relinquish

operations such that the execution following an acquire operation
and up to the relinquish operation is executed in a mutually
exclusive manner relative to the object implementing a mutex.
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Locks

Locks are an implementation of a mutex.

Sleep lock

Any mutex type which deactivates processes that attempt to
acquire a mutex that has already been acquired by another
process until a relinquish operation on the mutex activates one
or more of them.

Spinlock

Any mutex type which forces callers of an acquire operation to
spend an unbounded number of processor cycles re-evaluating
the availability of the mutex until it has been acquired. The
process that invokes acquire is never deactivated before the
completion of the acquire operation.

Spinlocks are preferred to sleep mutexes when the waiting
time for a resource is less than the time for the scheduling
overhead of process activation/deactivation or when
scheduling simply is not possible.
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Naive

void

lock(uint32_t *mutex)

{

while (ck_pr_fas_32(mutex, true) != false)

ck_pr_stall();

return;

}

void

unlock(uint32_t *mutex)

{

*mutex = false;

return;

}
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TATAS

void

lock(uint32_t *mutex)

{

while (ck_pr_fas_32(mutex, true) != false) {

while (ck_pr_load_32(mutex) == true)

ck_pr_stall();

}

return;

}

void

unlock(uint32_t *mutex)

{

*mutex = false;

return;

}
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TATAS
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Exponential Backoff

void

lock(uint32_t *mutex)

{

ck_backoff_t backoff = CK_BACKOFF_INITIALIZER;

while (ck_pr_fas_32(mutex, true) != false)

ck_backoff_eb(&backoff);

return;

}

void

unlock(uint32_t *mutex)

{

*mutex = false;

return;

}
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Exponential Backoff
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Fairness

Non-arbitrating spinlocks do not provide fairness (or
starvation-freedom) guarantees.
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CLH
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Fast path latency

Fast path latency

See http://concurrencykit.org/doc/appendixZ.html

http://concurrencykit.org/doc/appendixZ.html
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Limitations

Mutexes in general are not composable.

Subtle ordering issues can lead to hard-to-detect deadlock
conditions.

Blocking synchronization is sensitive to preemption.
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Discussion

Questions?
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